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1. Introduction

A real-valued function on a Banach space with bounded nonempty support is
called a bump. In [1], Azagra and Deville show that any Banach space with a
Lipschitz C''-smooth bump has another bump of the same smoothness whose set
of gradients contains the dual unit ball. Here, applying subtler constructions, we
use the same hypothesis to capture various closed sets in the dual—including the
unit ball—as exact gradient images of suitable Lipschitz C'-smooth bumps.

This note is an “infinite dimensional” continuation of [5], which concerns the
range of the gradient of a C'-smooth bump defined on R". There are some sig-
nificant differences between these two settings. In finite dimensions, the gradient
range is automatically closed and contains the origin in its interior, whereas there
exist Banach spaces with C'-smooth norms (even reflexive ones) on which some
bumps have gradient ranges with empty interior. (See [1] modulo [7], [2] and
{3].) On the other hand, infinite dimensions allow us to position infinitely many
bumps, with disjoint non-shrinking supports, inside a bounded set—a construc-
tion which is certainly impossible in R™.

TERMINOLOGY. In a Banach space X, we write Bx (zo,7) for the closed ball
with centre xo and radius r, and abbreviate By (0,1) as Bx. The support of
a bump b X — R is the set suppb = {r € X: b(x) # 0}. The gradient of a
function f on X will mean its Fréchet derivative and be denoted by f’ or V.
The range of a mapping F' is denoted by R(F). Any sum of vectors indexed
by the empty set is understood to equal the origin. Similarly, any product of
numbers indexed by the empty set will be put equal to 1.

2. Tools

In this section we review five general strategies for manipulating C'-smooth
bumps, under headings A-E. Several of these have been used before, e.g., in [5].

A. SM0OOTH COMPOSITION. In the Appendix, we construct C*°-smooth func-
tions p and m for use throughout this section. These analogues of the Lipschitz
functions ¢ — (¢ vV 0) and (s,t) — (s A t), respectively, allow us to mimic some
standard operations without destroying C'-smoothness.

We start by constructing a bump whose degree of smoothness is as good as
that of the norm on the Banach space X in question. Clearly,

z— [4—((lz) -2)vO)] Vo, zeX,

is a Lipschitz bump that is as smooth as ||-|| at all points  obeying both ||z|| # 2
and ||z|| # 6. Replacing (¢ Vv 0) with p(t) yields the result below.
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LEMMA 1: Let X be a Banach space with a Cl'-smooth norm |-||. Then X
admits a Lipschitz C'-smooth bump b with 0 < b(z) < 4 for every z, and

R(Vb) = [0, JR(|I-1)-

Proof: Let p be provided by Lemma A with r = 1. We prove the stated
conclusions for

b(z) = p(4 - p(lz|| - 2)), z€X.
Note that p is nondecreasing and convex, with p(||z|| ~2) = 0 if |lz|] < 2, and
p(llzll = 2) = |lef - 3 if |z]| > 4, so

3, if ]| <2,
3—p(lzll - 2), f2<|z|| <4,

b(x) = 6— ||z, if 4 < [jz|| < 5,
p(7 — ||=]), if 5 <|lz|l <7,
0, if 7 < ||z

In particular, suppb C 7By, so b is a bump. The C'-smoothness of b near 0
is evident; since p is C'°°-smooth, the chain rule [6, Chapter I, Theorem 5.4.2]
immediately yields that b is Cl-smooth everywhere else.

Clearly R(Vb) 2 R(}-|I'). When 2 < ||lz|| < 4, the above expression for b(z)
gives

Vb(z) = —p'([lzll = 2) 1] ().

There is a similar outcome when 5 < ||z|| < 7. Since p'([0,2]) = [0, 1] and R(||-||")
is symmetric, we deduce that R(Vb) = [0,1] - R(||||"). |

In any reflexive Banach space X with a C'-smooth norm, we have R (|-||') =
OBx-, and Lemma 1 provides a C''-smooth bump b with R(Vb) = Bx-. To guar-
antee this identity in Cl-smooth but nonreflexive spaces, or in reflexive spaces
whose norm is not Fréchet smooth, more effort is required. This is the content of
our main result, below; Bx- is just one example of the gradient ranges we obtain.

B. TRUNCATION. Let b: X — R be a bump with unbounded range, say, with
supgcx b(x) = +oo. Fix any r > 0, and apply Lemma A to produce a function
p. Define
b(z) = r — p(2r — p(b(z))), =z € X.

We claim that b is a bump with range inside [0,7]. Indeed, take any x € X.
If b(x) = 0, then p(b(z)) = 0, so b(z) = r — p(2r) = 0. Thus suppb C suppb.
If p(b(x)) > 2r, then Z(x) =r-0=r If (0 <) p(b(z)) < 2r, then b(z) >
r— $(2r — p(b(z))) = 3p(b(z)) > 0. Hence R(b) C [0,7]. Now, take z € X such

that b{z) > 3r. Then E(x) =r # 0. Therefore b is a bump.
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C. DOMAIN-SCALING. For each 8 > 0, define an operator T[3] on C(X;R) as
follows:

(TBle)(z) = Be (B7'2), ze€X.
If b is a C'-smooth bump on X, with suppb C Bx, and 8 > 0 is given, then T[8]b
is a C''-smooth bump on X with support in 8By, and satisfying R(VT[8]b) =
R(Vb).

D. DOMAIN-SHIFTING. Given two C''-smooth bumps b1, b2 on X, a C'-smooth
bump whose gradient range equals R(Vb;) U R(Vbe) is given by

zh(z)+b(z—y), z€X,

where y € X is some fixed vector with sufficiently large norm.

E. GRADIENT-RANGE CHAINING. Suppose by, by are Cl-smooth bumps such
that Vb, = £ on a neighbourhood of some point y € X. Then a C'-smooth
bump whose gradient range equals R(Vby) U (€ + R(Vby)) is given by fixing
B > 0 sufficiently small and considering the function

v by(z) + T[Blba(z — y), z € X.

In the following lemma, we construct C''-smooth bumps to which this idea may
be applied. Our notation is

Dyy(a,¢) = co (Bx- (a,7) U{a+(})

for a,¢ in X* and 4 > 0. When ||{|| > 7 (the case of interest), this is a “drop”
whose body is centered at a and whose vertex is a + .

LEMMA 2 (Drop Lemma): Let X be a Banach space with a Lipschitz C-smooth
bump. Let ¢ € X*, v € (0,||¢||), and r > 0 be given. Then there exist a constant
B> 0 and a C'-smooth bump ¢: X — R such that

(1) 0 < plx) <r forevery x € X,

(ii) w(x) = 0 whenever |lz|| > r,
(ii) R(V) C Dy(0,¢), and
(iv) V() = ¢ for every « € [Bx.

Proof: We treat the case r = 1. This suffices, for if some bump ¢; satisfies
(i)—(iv) for r = 1, and any other r > 0 is given, then ¢ = T[r]y; satisfies (i)—(iv)
as written.

By truncation, translation and scaling, as described above, we may assume
that we have at hand a Lipschitz C'-smooth bump b on X for which b(0) > 0,
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0 < b(x) <1, and ||Vb(z)| < v for every x € X. Since ||[Vb(0)|| < v < ||¢]], there
exists £ € X such that

(e > G+ 5 198O .
Since b(0) > 0 and b is differentiable at 0, we may scale z; to arrange also that
b(O) + (G, 1) >0,
b(z1) = B(0) = (VB(0), 22) >~ (Il = IVBO)]) ]

Now apply Lemma A with

- %(”g“ S OTNIEN

to produce a function m for use in defining

g(z) = m(b(z),b(0) + (¢, z)), z€X.

Clearly, g is a C'-smooth function with g(x) < b(z) < 1 for every z € X. We
estimate

b(z1) = (b(0) + (¢, 21))

> (Vb(0), 21) — 7 (IIKI = IVH(O)) llea || = (¢, 1)

- IBO) = 0 = 1950 + § 161+ 17801 ]

P

>

N

1

2 UIC = IVB@)) [l 1]} = 2r-

Continuity then provides some 3 > 0 such that

b(x) — (b(0) + (¢, x) ) > 2r for every z € x; + By,

and so, by the properties of m, g(z) = b(0) + (¢, z) and Vg(zx) = ¢ for these z.
Since R(m') = {(a,1 ~ @): a € [0,1]}, the chain rule gives

R(Vg) C co[R(Vb) U {(}] C co[yBx~ U {(}].

On diminishing S, if necessary, we may assume that g(z) > %g(xl) (> 0)
whenever x € 21 + 8Bx. Let p be the function provided by Lemma A when
r= %g(xl), and put

p=pog.
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Then ¢ is Cl-smooth and 0 < ¢(z) < 1 for every x € X, while the chain rule
gives
R(Ve) C [0,1]- R(Vg) C co[yBx- U {¢} = D,(0,().

For every = € z1 + 8By, we have g(x) > 2- 3g(z1), so o(z) = g(x) — $9(z1), and
Vp(z) = Vg(z) = (.

It remains to reposition the function ¢ and arrange its support and scaling
properties. Observe that if b(x) = 0, then

(0 <) o(z) = p(g(x)) < p(b(z) A (b(0) + (2, 2))) < p(0) (= 0).

Hence supp ¢ C suppb, and the bump = — (T[vy]¢)(x — 1) has all the desired
properties for v > 0 sufficiently small. (The 8 in conclusion (iv) equals 7 times
the 3 in the previous paragraph.) |

3. The main result

This section is devoted to the statement and proof of our main result, in which
we construct a bump b whose gradient range is precisely Q for a given open
connected set € in X* satisfying some mild conditions. The central construction
can be visualized by imagining a dense set of points in €2, and realizing each
point of £ as the limit of a countable chain of linked drops with vertices in the
dense set. Each chain will be the gradient range of a countable pile of bumps
constructed by the methods of Section 2. Building such a pile for each target
point and then dispersing the piles throughout the unit ball of X produces the
desired bump. Our argument was inspired by [1], [4] (and actually goes back to
the proof of the Banach open mapping theorem), but includes safeguards against
producing gradient images outside the set {2.

THEOREM: Let X be an infinite dimensional Banach space with a Lipschitz C?-
smooth bump. Let  C X* be an open connected set containing the origin and
satisfying this property:

There exists a summable sequence ag, aj, as, .. . of positive numbers
such that every n € § can be expressed as lim;_,o &; for some
sequence 0 = £y,&1,&s,... in Q such that ||§41 — &l < ai, and
that the linear segment co {£;,&,41} lies in Q for every 1 =0,1,2,....

Then there exists a Lipschitz C'-smooth bump b: X — [0,1] such that R(Vb)
= Q.
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Proof: Since X is C'-smooth, the density character of X* equals that of X.
(This is a straightforward consequence of Ekeland’s Variational Principle.) Thus,
Q must contain a dense subset, say D, whose cardinality equals the density
character of X. Put A = 1—10, and apply [1, Lemma 2.1] to produce a subset
{z¢ : € € D} of (1—A)Bx for which &, &' € D and € # £ implies ||z — z¢r|| > 4A.

Let 0 # 1 € Q be any fixed vector. The theorem assumption provides a
sequence 0 = &, &1, &9, - - - in Q that converges to 1 and enjoys certain properties.
It is an easy exercise to show that, by perturbing the entries slightly if needed,
such a sequence can be chosen from elements of the set D. Let us assume that
this has been done, and write (1) = &1, 7(2) = £2, . ... Thus each 7 € Q identifies
a sequence in D; for later convenience, we write 7(0) = 0 in all cases.

It will be convenient to associate with every i € £ the sequence of increments
(C1,€2, - - ) defined by ¢; = n(3) —n(i—1). (Note that ||(;+1]| < a; for every i > 0.)
Every sequence ((1,(s,...) in X* arising in this way from some € Q will be
called an admissible sequence; an i-tuple (¢, . .., {;) will be called admissible
if it arises as the initial segment of some admissible sequence. We will write A
for the collection of all admissible tuples, i.e.,

A= {(n(1),n(2) = n(1),n3) = n(2),...,n(E) —n(i—1)):n € Q, i e N} U{0}.

Finally, we define a set-valued mapping S: A — 2X as follows:
Sy G) ={{ € X" (Cry- Gy ¢ €A}, (Gry--nG) €A, PEN

(Consistency requires S(§) = {¢": (¢') € A} = {n(1):n € Q}.) Clearly S(-) is
nonempty-valued on 4; we define S(¢y,...,¢;) =0 for (¢1,-.., ) € A.

The chains of drops mentioned in the preamble will have links of the form
D.(a,(), where o € Q and ( € X* ~ {0} obey co {a, @+ (} C Q. For every such
pair, we fix y(e, {) > 0 so small that v(«, () < ||¢|| and D4 ¢y{@,¢) C 2. Then
we apply the Drop Lemma with r = A, writing ¢¢  for the resulting bump and
B¢, for a number in (0, A) such that

(1) Ve n(2) =¢ whenever z € 3 ,Bx.

We shall use the following simplified notation. For any admissible sequence
(¢1, o, . . .) associated with a point 5 € Q, and any i € N, we put
% =2 (G Gimn G),
(2) ﬁl = ,B(i,’yi’
Ti = Ty1) + PrZn) + B1BaTp@y + - + B+ Bic 1Ty
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(In particular, we put v; = v(0,(;).) Notice that whenever 5,7’ € {0 generate
admissible sequences whose first i entries coincide, these definitions are consis-
tent. Thus, in any formula containing an admissible i-tuple ({1, ..., ;) together
with such symbolé as Y1,-- 5%, P1,-.-, 05, or T1,...,7;, we understand that the
relationships in (2) are in force.

Along any admissible sequence arising from some 7 € €, the inequalities
”xn(i)” <1— A and f8; < A hold for every i € N, so (2) gives

(3) 12l < @-A)A+A+---+A7H)=1-A%

The sequence (1, T2, . ..) provides a list of centres for a nested family of balls in
X:
@) int B(Z;, B1 - fi—14) 2 int B(Zi, B1 -+ - Bi-15i)
2B(Zi41,5---5i4), i=0,1,2,....

Indeed, the first inclusion holds because 3; < A. For the second, note that each
x in B(Zj41, 01 BiA) obeys

e — Zill < lle = Zigall + Br -~ Bi | 2nasn) |

<Br- B+ Bi(l— A)=Bife - B

Each nested sequence of balls described above supports one of the “countable
piles of bumps” mentioned in the preamble.

Now suppose distinct 7,7’ in Q are given, with associated scaling sequences
(8:), (B)) and centres (Z;), (Z}), respectively. Choose the largest p € N such that
n(j) = n'(j) for j < p. Clearly 3} = B; and 7, = %; for j < p; then, at stage p+1,
the nested sequences of balls corresponding to 7 and 7’ split apart as follows:

Y € B(Zp41,81 - BpA) }
y € ]B("T\;J+1a Bi:--BpA)
Indeed, since distinct points of the form z¢, £ € D, are separated by at least 44,
we have

(6) ly = 9'll > B B

[Zp1 = Fppa]l = B1- B [enorr) — Twripa || 2 481+ BpAA,
so any y,%’ as in (5) obey
“y' -yl > ||5p+1 - 55;,4_1” -y - §P+1|| — ”y/ - §;+1H > B ',3,,(4A —-A-A).
This proves (5). In conjunction with (4), it implies that whenever 4,5 > p+ 1,

© yem@,ﬂy-ﬁi.lm}

o lly =o'l > B+ BpA 2 By BisaA.
yIGB(ij,ﬁl-“ﬂj_lA) 1 P 1 1
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Now for each n € N we define a bump b,,: X — R by nesting n sums:

ba(@)= 3 (soglm(x—fl)

¢1€S(D)

Py (T[ﬁﬂ%zm (&~ )

¢2€5(¢1)

+ > T[B1B2 - Br-1lp¢nma (T = fEn)) . )

$r€S5{{1:62+e 0 iCn—1)

To clarify the support of b,, recall that for every ¢ € X™* and v € (0, |[<[]), we
have ¢ ,(z) = 0 whenever ||z|| > A. Hence for each ¢ < n,

(8) T[BBz---Bi-1lpci (8 =Ti) #0 = |z —Zil| < B1---Bi-1A < AL

Every x € X with ||z| > 1 satisfies ||z — Z;|| > A? by (3), and hence produces a
zero value in every term on the right side of (7). Thus suppb, C Byx. Also, in
view of (1), we have

(9) VA(TBBe- - Bicalogr) (& = Bi) = G
whenever ||z — Z;|| < By -+ Bi-15:.
We have taken care to arrange the following situation:
CramM: For every ¢ € X and every n € N there are an admissible n-tuple

(€1 --,€Cn) and a neighbourhood U of x such that all y € U satisfy

bn(y) =i m (¥ — Z1)
+ T[B1]p¢s e (¥ — T2)
+ T1B1Baloce v (y — T3)
(10) +o A+ T[B1B2 -+ - Bac1]Ptn e (¥ — Zn),

and, in particular,
(11) Vb, (z) € Q.

To prove this claim, fix z € X and n € N. Suppose first that z lies outside the
ball B(z,(1), A) for every 77 € Q. Since ||zg — z¢|| > 4A whenever € # ¢ in D,
the triangle inequality implies that Uy = {y: ||y — z|| < A} meets at most one
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ball of the form B(z¢,A), £ € D. Hence there exists § > 0 for which U = B(z, 9)
meets no such ball. Combining (8) and (4) establishes that b, (y) = 0 for every
y € U, and moreover, that in this degenerate case, (10) holds for every admissible
n-tuple. Of course, Vb, (x) = 0 obeys (11).

Alternatively, suppose * € B(x,(), A) for some 7 € Q. This establishes case
p =1 of the following condition:

z €B(Z,, B Bp-14) for some (¢1,...,{) €A, 1<p<n.

Choose the largest such p. Condition (6) implies that the associated p-tuple
(¢15- -+, Cp) is unique. Moreover, using this p-tuple to specify

Uo={y: lly— =l < B BpA}

produces an open set in which the only nonzero summands in lines 1 through
p of (7) are associated with this same p-tuple. If p = n, this establishes (10).
If p < n, the maximality of p implies that for every ¢’ € S(¢1,...,¢{p), we have
x & B(Z,, 1,51 BpA). Recall that, by (2), Ty = Tp + B1- - Bp&yy (p+1)- The
4A-separation of distinct vectors of form z¢, £ € D, guarantees that among all
the balls B(Z},, 81 - - BpA) arising this way, there can be at most one that meets
Up. And since the centre of Uy lies outside that one, we can choose § > 0 so small
that U = {y: ||y — z|| < } obeys

UNB(Tyy1,B1 - BpA) =0 whenever (' € S(C1,---,(p)-

Together with (6) and (8), this shows that all summands in lines p+1,...,n
of (7) contribute 0 to the definition of b, (y), for every y in U. Indeed, much as in
the previous paragraph, conclusion (10) holds for U along any admissible n-tuple
whose first p entries agree with the given ones. To prove (11), recall (4): for each
J < p we have ||z — Z;|| < B1--- B, so by (9),

(12)  Vba(x) € G+ G+ 4 Gpo1 + Dy, (0,() = Dy, (n(p — 1), n(p)) C Q.

Thus the stated claim holds in all cases.
The claim above implies that each b,, is C'-smooth on X; also, for all z € X,

bnt1(x) — bn(z)| < A" and  ||[Vbpg1 — Vip(x)]} < 27" + an.

Thus the bumps b,, n € N, converge uniformly to a bump, say b, and their
gradients Vb,, n € N, also converge uniformly on X. Therefore b is a C*'-smooth
function with Vb(z) = lim, o Vb,(z) uniformly for x € X. We note that
suppb C By and that 0 < b(z) <A+ A%Z+---<lasA=&.
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Since R(Vb,) C § for every n by (11), it follows that R(Vb) C €.

To show that R(Vb) D Q, fix any n € . Let ((1,(2,...) be the corresponding
admissible sequence, with +;, scale factors 3; and centres Z; given by (2). Note
that since each 8; < A = 5 and ||lz¢|| < 1 — A, the centres Z; are partial sums
of the convergent series

T = Ty + Pry(2) + Pibanez) + -
Moreover,

1T — @1l <(B1 + 1Bz +--)(1 = A)
<B(l+A+ A%+ )1~ A) =P,

I|T — Zof| <(B1B2 + B1B2B3 +---)(1 = A)
<1+ A+ A%+ )(1—A) = B,

s0 T € B(Z;, By -+ ;) for every i € N. This implies that Vb,(Z) =1+ -+ ¢n
for every n € N, and

Vb(z) = lim Vbn(7) = lim (G4 +G) = lim n(n) = 1.

n—>0o0

Since 5 € Q) was arbitrary, we have Q C R(Vb). [ |

Remarks: Our Theorem evidently applies whenever 2 C X ™ is an open bounded
convex set containing the origin.

Consider any set U C X* that can be expressed as | J ¢ Aﬁ; where each €2,
satisfies the assumptions of the Theorem above, and where A is a set whose
cardinality does not exceed the density character of X. For every a € A let b,
be a Cl-smooth bump on X such that R(Vb,) = Q4. By scaling and shifting
domains, we may arrange for all b,’s to have mutually disjoint supports lying
in Bx. Then b =) ., bq is a C'-smooth (but perhaps not Lipschitz) bump
satisfying R(Vb) = U. This construction covers many unbounded sets, even in
the case where the index set A is countable. In particular, we can express any
open connected set U containing the origin as R(Vb), as Azagra and Jimenez
have shown that all such sets have the above form. Taking U = X* reproduces
the result of Azagra and Deville [1].

Our theorem allows for sets  that are far from being starshaped, like the
interior of Bx (20, 2) ™ Bx (20, 1) whenever 1 < ||zl < 2. Indeed, gradient-range
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chaining (tool E above) allows us to produce figures which are not even simply
connected. A finite-dimensional version of this observation, with illustrations,
appears in [5].

The conclusions of our Theorem cover those of [5, Theorem 12], one of that
paper’s main results. However, the proof in [5] (where X = R"™) needs a rather
different argument because no bounded subset of R" can support infinitely many
bumps having disjoint supports of comparable diameters.

4. Appendix

Here we construct C*°-smooth functions p and m that imitate the functions
t—tt and (s,t) — s AL

LEMMA A: Letr > 0, and let p : R — [0,400) be an even C*-smooth function,
with supp p C [—r,7] and [ p(u)du = 1. Define p: R — [0,400) and m: R* - R
by
p(t) = / [t —r—u]t p(u)du, teR,
R

m(s,t) = //R2 [(s — u) A (t — v)} p(u)p(v)dudv, (s,t) € R2.

Then p is nondecreasing and convex, both p and m are C*-smooth, and
0, ift<o, 1.,
p(t)_{t—r, ift> o, 03p(t)§§t1f0<t§2r,
s, ifs<t-—2r,
m(s,t) = m(t,s) = {t, ift<s—or m(s,t) < s At always,
and R(p') = [0,1] and R(m’) = {(a,1 — a): a € [0, 1]}.

Proof: The smoothness of p and m is well-known and easy to prove. If t > 2r,
we have t — r — u > 0 for every u € supp p and hence

p) = [(t=r=wptudu=t =7~ [ uptwdu=t-r.

because u ~ up(u) is an odd function. Similarly, p(t) = 0 for ¢ < 0. Since
t — (t —r)* is convex, p is convex too: we have p(0) = 0 and p(2r) = r, so this
forces p(t) < 3t for 0 <t < 2r.

For any ¢t € [0,2r], the following calculation shows that p'(t) € [0, 1]:

t—r

t-r—u)p(u)du= / p(u)du.

-r

t—1

p)= [ le-r-u*Ju= [

-7



Vol. 132, 2002 RANGE OF THE GRADIENT OF A LIPSCHITZ C!'-SMOOTH BUMP 251

Since p € C*™, with p'(t) = 0 for t < 0 and p'(t) = 1 for ¢ > r, we have
R() =[0,1].

Similar arguments establish the stated properties of m. Indeed, the gradient
of (s,t) — s At lies in {(0,1),(1,0)} whenever it exists, so the averaging implicit
in mollification gives Vm(s,t) € co{(0,1),(1,0)} = {(a,1— a): a € [0,1]} for
every (s,t). But Vm is continuous and takes on the values (1,0) and (0, 1), so
R(Vm) = co {(0,1),(1,0)}. |
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