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1. I n t r o d u c t i o n  

A real-valued function on a Banach space with bounded nonempty support is 

called a b u m p .  In [1], Azagra and Deville show that any Banach space with a 

Lipschitz Cl-smooth bump has another bump of the same smoothness whose set 

of gradients contains the dual unit ball. Here, applying subtler constructions, we 

use the same hypothesis to capture various closed sets in the dual--including the 

unit ball--as exact gradient images of suitable Lipschitz Cl-smooth bumps. 

This note is an "infinite dimensional" continuation of [5], which concerns the 

range of the gradient of a Cl-smooth bump defined on R n . There are some sig- 

nificant differences between these two settings. In finite dimensions, the gradient 

range is automatically closed and contains the origin in its interior, whereas there 

exist Banach spaces with Cl-smooth norms (even reflexive ones) on which some 

bumps have gradient ranges with empty interior. (See [1] modulo [7], [2] and 

[3].) On the other hand, infinite dimensions allow us to position infinitely many 

bumps, with disjoint non-shrinking supports, inside a bounded set--a  construc- 

tion which is certainly impossible in R n . 

TERMINOLOGY. In a Banach space X, we write Bx (x0, r) for the closed ball 

with centre x0 and radius r, and abbreviate Bx (0, 1) as Bx. The s u p p o r t  of 

a b u m p  b: X --+ R i s  the set suppb- -  { x E X : b ( x ) # 0 } .  The g rad i en t  of a 

function f on X will mean its Fr~chet derivative and be denoted by fP or Vf .  
The range of a mapping F is denoted by T~(F). Any sum of vectors indexed 

by the empty set is understood to equal the origin. Similarly, any product of 
numbers indexed by the empty set will be put equal to 1. 

2. Tools  

In this section we review five general strategies for manipulating Cl-smooth 

bumps, under headings A-E. Several of these have been used before, e.g., in [5]. 

A. SMOOTH COMPOSITION. In the Appendix, we construct C~ func- 

tions p and m for use throughout this section. These analogues of the Lipschitz 

functions t ~-~ (t Y 0) and (s, t) ~-~ (s A t), respectively, allow us to mimic some 

standard operations without destroying CS-smoothness. 

We start by constructing a bump whose degree of smoothness is as good as 

that of the norm on the Banach space X in question. Clearly, 

x~-~ [ 4 - ( ( l l x l l - 2 )  v 0 ) ] v 0 ,  x e X ,  

is a Lipschitz bump that is as smooth as t['l[ at all points x obeying both Ilxll # 2 

and IIxll # 6. Replacing (t v 0) with p(t) yields the result below. 



Vol. 132, 2002 RANGE OF THE GRADIENT OF A LIPSCHITZ C1-SMOOTH BUMP 241 

LEMMA 1: Let X be a Banach space with a C l - s m o o t h  norm II'll. Then X 
admits  a Lipschitz  C l - s m o o t h  bump b with 0 <_ b(x) <_ 4 for every x, and 

R(Vb)  = [0,1]~(ll ' l l ' ) .  

Proof: Let p be provided by L e m m a  A with  r = 1. We prove the s ta ted  

conclusions for 

b ( x )  = p ( 4  - P(llxll - 2 ) ) ,  x �9 X .  

Note t ha t  p is nondecreasing and convex, with p (l[xll - 2) = 0 if Hxll < 2, and 

p ( [Ix[I - 2) = Ilxll - 3 if lixl[ _> 4, so 

3, if Ilxll < 2, 
3 - p(l lx[I - 2),  if 2 < II~[I < 4, 

b ( x )  = 6 -  IIx][, if  4 < llxll ~ 5, 
p(7 - Ilxll), if 5 < Ilxll < 7, 
0, if  7 < Ilxll. 

In par t icular ,  supp b C_ 7•x,  so b is a bump.  The  C l - smoo thnes s  of b near  0 

is evident; since p is C ~ - s m o o t h ,  the chain rule [6, Chap te r  I, Theo rem 5.4.2] 

immedia te ly  yields t ha t  b is C l - s m o o t h  everywhere else. 

Clear ly n ( V b )  _~ n(IHI '  ). When  2 < IIxll < 4, the above expression for b(x) 
gives 

Vb(x)  -- -p ' ( l lx l l  - 2)[I.[l' (x). 

There  is a similar outcome when 5 < IIx[I < 7. Since p'([0, 2]) = [0, 11 and n( l l ' l l ' )  

is symmetr ic ,  we deduce t ha t  T~(Vb) = [0, 1]. n(ll.ll'), t 

In any reflexive Banach  space X with a C l - s m o o t h  norm, we have T~ (I111') = 

OBx . ,  and L e m m a  I provides a C l - s m o o t h  b u m p  b with  T~(Vb) = Bx*.  To guar- 

antee this ident i ty in C l - s m o o t h  but  nonreflexive spaces, or in reflexive spaces 

whose norm is not Fr6chet smooth ,  more  effort is required. This  is the content  of 

our  ma in  result ,  below; ~x* is jus t  one example  of  the gradient  ranges we obtain.  

B. TRUNCATION. Let  b: X --+ R be a b u m p  with unbounded range, say, with 

sup~ex  b(x) = +cr  Fix  any r > 0, and apply  L e m m a  A to produce a function 

p. Define 

"b(x) = r - p(2r  - v (b(x) ) ) ,  x e X .  

We claim tha t  b is a b u m p  with range inside [0, r]. Indeed, take any x E X .  

If  b(x) = 0, then  p(b(x))  = 0, so b(x) = r - p(2r)  = 0. Thus  s u p p b  C supp b. 

I f p ( b ( x ) )  >_ 2r, t h e n b ( x )  = r - 0  = r. If  (0 <)  p(b(x))  < 2r, t h e n b ( x )  > 

r - �89 - p ( b ( x ) ) )  = ~ p ( b ( x ) )  >_ O. Hence T4(b) C [0, r]. Now, take x C X such 

tha t  b(x) > 3r.  Then  b(x) = r # O. Therefore  b is a bump.  
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C. DOMAIN-SCALING. For each fl > 0, define an operator T[~] on C(X;  R) as 

follows: 
(T[~]~)(x) --- ~ ( ~ - l x ) ,  x �9 X. 

If b is a Cl-smooth bump on X, with supp b C Bx, and ~3 > 0 is given, then T[l~]b 

is a Cl-smooth bump on X with support in/~Bx, and satisfying T4(VT[fl]b) -- 

n(Vb). 

D. DOMAIN-SHIFTING. Given two Cl-smooth bumps bl, b2 on X, a Cl-smooth 

bump whose gradient range equals R(Vbl) U 74(Vb2) is given by 

x ~ - + b l ( x ) + b 2 ( x - y ) ,  x � 9  

where y �9 X is some fixed vector with sufficiently large norm. 

E. GRADIENT-RANGE CHAINING. Suppose bl, b2 are Cl-smooth bumps such 

that  Vbl -- ~ on a neighbourhood of some point y �9 X. Then a Cl-smooth 

bump whose gradient range equals 74(Vbl) U (~ + T~(Vb2)) is given by fixing 

fl > 0 sufficiently small and considering the function 

x h i (x )  + - y),  x �9 X .  

In the following lemma, we construct Cl-smooth bumps to which this idea may 

be applied. Our notation is 

Dr(a ,  r = co (Bx* (a, 7) U {a + (}) 

for a, ( in X* and 3' > 0. When IliI] > 3' (the case of interest), this is a "drop" 

whose body is centered at a and whose vertex is a + (. 

LEMMA 2 (Drop Lemma): Let X be a Banach space with a Lipschitz Cl-smooth 

bump. Let ( �9 X*, 3' �9 (0, [](H), and r > 0 be given. Then there exist a constant 

> 0 and a Cl-smooth bump ~: X -+ R such that 

(i) 0 <_ ~(x) <_ r for every x �9 X ,  

(ii) ~(x) = 0 whenever [[x[[ _> r, 

(iii) /'~(V~) c_ D r (0, (), and 

(iv) Vp(x) = ( for every x � 9  

Proof: We treat the case r -- 1. This suffices, for if some bump ~l satisfies 

(i)-(iv) for r -- 1, and any other r > 0 is given, then ~ = T[r]~l satisfies (i)-(iv) 

as written. 
By truncation, translation and scaling, as described above, we may assume 

that we have at hand a Lipschitz Cl-smooth bump b on X for which b(O) > O, 
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0 <_ b(x) < 1, and IIVb(x)l] < 3' for every x �9 X.  Since IIVb(0)ll < 3' < I]~11, there 

exists xl  E X such tha t  

3 1 
- ( ( ,Xl )  > (5  II(I]-t- ~ IlVb(0)ll)][Xll] �9 

Since b(O) > 0 and b is differentiable at  0, we may scale xl  to arrange also tha t  

b(O) + (~, xl)  > O, 

1 
b(xi) - b(0) - (Vb(0),xl)  > - 5 ( I t , l l -  IIVb(0)l])llxl]l �9 

Now apply Lemma A with 

1 
r = 5(]1~11- I]Vb(0)II)IlXlH 

to produce a function m for use in defining 

O(x) = .~(b(x),b(O) + (~,x) ), x �9 X.  

Clearly, g is a Cl -smooth  function with g(x) <_ b(x) _< 1 for every x �9 X. We 
estimate 

b(Xl) - (b(0) q- (r Xl)) 
1 

> (Vb(0),xl)  - ~ ( l l~ l l -  IIVb(0)ll)llXlll- (~,Xl) 

> - ] lVb(O) l l -  ( l l~l l-  HVb(O)]I) + ~ ]1~1] + ~ ]lVb(O)ll ]lxl][ 

1 
= ~ (ll~ll - I[Vb(O)ll)I]x~H = 2r. 

Continuity then provides some 3 > 0 such tha t  

b ( x ) -  (b (O)+(~ ,x ) )  > 2 r  for e v e r y x � 9  

and so, by the properties of m, g(x) = b(O) + (~, x) and Vg(x) = ~ for these x. 

Since "R(m') = {(~, 1 - c~): c~ �9 [0, 1]}, the chain rule gives 

u(vg) c co[n(vb) u c co[3'Bx, u 

On diminishing 3, if necessary, we may assume tha t  g(x) > �89 (> 0) 

whenever x �9 Xl + 3Bx .  Let p be the function provided by Lemma A when 

r = �88 and put  

~p=pog .  
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Then p is Cl-smooth and 0 _< ~(x) _< 1 for every x C X, while the chain rule 

gives 

74(V~) C [0, 1]- TZ(Vg) c co[7•x* U {(}] = D~ (0, (). 

For every x E Xl + f l B x ,  we have g(x) > 2.�88 so 9~(x) = g(x) - �88 and 

v (x) = Vg(x)  = r 

It remains to reposition the function ~ and arrange its support and scaling 

properties. Observe that if b(x) = 0, then 

(0 <) ~(x) = p(g(x)) < p(b(x) A (b(0) + (z,x))) < p(0) (= 0). 

Hence supp~ C_ suppb, and the bump x ~-+ (T[7]r - Xl) has all the desired 

properties for 7 > 0 sufficiently small. (The/3 in conclusion (iv) equals 7 times 

the/~ in the previous paragraph.) | 

3. T h e  m a i n  result  

This section is devoted to the statement and proof of our main result, in which 

we construct a bump b whose gradient range is precisely ~ for a given open 

connected set ~ in X* satisfying some mild conditions. The central construction 

can be visualized by imagining a dense set of points in ~, and realizing each 

point of ~ as the limit of a countable chain of linked drops with vertices in the 
dense set. Each chain will be the gradient range of a countable pile of bumps 

constructed by the methods of Section 2. Building such a pile for each target 
point and then dispersing the piles throughout the unit ball of X produces the 

desired bump. Our argument was inspired by [1], [4] (and actually goes back to 

the proof of the Banach open mapping theorem), but includes safeguards against 

producing gradient images outside the set ~. 

THEOREM: Let X be an infinite dimensional Banach space with a Lipschitz C 1- 

smooth bump. Let 12 C X* be an open connected set containing the origin and 

satisfying this property: 

There exists a summable sequence ao, al, a2, �9 �9 �9 of positive numbers 

such that every y E fl can be expressed as l imi_~ ~i for some 

sequence 0 -- ~0,~1,~2,-.. in ~ such that H~+I -~ i l l  < ai, and 

that the linear segment co {r ~i+1} lies in ~ for every i = 0, 1, 2 , . . . .  

Then there exists a Lipschitz Cl-smooth bump b: X --+ [0, 1] such that Ti(Vb) 
- ~ .  
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Proof: Since X is Cl-smooth, the density character of X* equals that  of X. 

(This is a straightforward consequence of Ekeland's Variational Principle.) Thus, 

gt must contain a dense subset, say D, whose cardinality equals the density 

character of X. Put  A = 1 ,  and apply [1, Lemma 2.1] to produce a subset 

{x~ : ~ E D} of (1--A)•x for which 4, ~' E D and ~ ~ ~' implies IIx~ - x~, II ~ 4A. 

Let 0 r ~/ E ~ be any fixed vector. The theorem assumption provides a 

sequence 0 = 40, ~1,42,.-. in ~ that converges to ~ and enjoys certain properties. 

It is an easy exercise to show that,  by perturbing the entries slightly if needed, 

such a sequence can be chosen from elements of the set D. Let us assume that 

this has been done, and write ,1(1) = 41, ~(2) = 42, . . . .  Thus each r/E f~ identifies 

a sequence in D; for later convenience, we write ~/(0) = 0 in all cases. 

It will be convenient to associate with every ~ E ~ the sequence of increments 

(41, @,. . -)  defined by ~i = ~ / ( i ) -~ ( i -1 ) .  (Note that I1~i+1]] < ai for every i ~ 0.) 

Every sequence ({1,~2,.-.) in X* arising in this way from some 7/ E ~ will be 

called an admiss ib le  sequence ;  an i-tuple ({1, . . . ,  ~i) wilt be called admiss ib le  

if it arises as the initial segment of some admissible sequence. We will write A 

for the collection of all admissible tuples, i.e., 

.4 = { (~/(1), ~/(2) - 7/(1), r/(3) - ~ (2) , . . . ,  ~/(i) - , l ( i  - 1)): ~/e ~,  i �9 N} U {0}. 

Finally, we define a set-valued mapping S: .A --~ 2 X* as follows: 

= { (  �9 x * :  �9 A} ,  �9 .4, i �9 N. 

(Consistency requires S(0) = {C': (C') �9 .A} = {~(1): ~ �9 ~}.)  Clearly S(-) is 

nonempty-valued on ~4; we define S ( ( 1 , . . . ,  (i) = 0 for (41,---, ~i) ~ ~4. 

The chains of drops mentioned in the preamble will have links of the form 

D~((~, C), where ~ �9 ft and ~ �9 X* \ {0} obey co {~, c~ + C} C ~. For every such 

pair, we fix 7 ( a , ( )  > 0 so small that 7(a,C) < 1[4[[ and D . ~ ( a , ~ ) ( a , ~ )  C a .  Then 

we apply the Drop Lemma with r = A, writing ~ , ~  for the resulting bump and 

/3~,~ for a number in (0, A) such that 

(1) V~ ,~ (z )  -- ~ whenever z � 9  

We shall use the following simplified notation. For any admissible sequence 

(~1, (u , . . . )  associated with a point ~/�9 ~, and any i �9 N, we put 

7i = 21-i7(~1 + ' ' "  + ~i-1, ~i), 

(2 )  = 

~ = x~(1) +/~x,~(~) + ~3~/~x,~(~) + . . .  +/3~ ...~,~_~x,(~). 
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(In particular, we put 71 = 7(0, 41).) Notice that whenever ~?, ~?t E ~ generate 
admissible sequences whose first i entries coincide, these definitions are consis- 

tent. Thus, in any formula containing an admissible i-tuple (~1,-.., ~i) together 

with such symbols as 71,-.-,  7i, t l , . . . ,  fli, or 21 , . . . ,  2i, we understand that  the 
relationships in (2) are in force. 

Along any admissible sequence arising from some y C ~, the inequalities 

Ilxn(i)[[ < 1 - A and fli < A hold for every i E N, so (2) gives 

(3) ll2i]] < ( 1 -  A ) ( l +  A + - - - +  A i - I )  = 1 -  A i. 

The sequence (21, 22, . . . )  provides a list of centres for a nested family of balls in 

X: 

int B(2i, i l l" '"  fl/-1 A) _D int B(2/, f i x ' "  fli-lfli) 
(4) 

_~ B ( 2 i + l , f l l ' " t i A ) ,  i = 0,1,2 . . . . .  

Indeed, the first inclusion holds because t i  < A. For the second, note that each 

x in B(2i+l, t l " ' "  t i  A) obeys 

IIx - 2~II < tlx - 2~+1tl + ti*" "fli H/r/(i+l)ll 
< t l " ' ' f l i  A q - t l ' ' ' t i (  1 -- A)  = t l f l 2 " " t i "  

Each nested sequence of balls described above supports one of the "countable 

piles of bumps" mentioned in the preamble. 

Now suppose d i s t inc t  7/, ~/' in ~ are given, with associated scaling sequences 
' ( i ) ,  respectively. Choose the largest p �9 N such that (fli), (fli) and centres (2i), 2' 

^' = 2j for j < p; then, at stage p + l ,  ~/(j) = ~'(j) for j _< p. Clearly fl~ = flj and xj 
the nested sequences of balls corresponding to ~ and ~?' split apart as follows: 

Y � 9  ~ I l y -  y'll > & . . . G a .  (5) y' �9 ~ ( G + I , f i ~  t ~ a )  

Indeed, since distinct points of the form x~, ~ �9 D, are separated by at least 4A, 

we have 

li2 +1 - 2L§ = t l  . . . t ip >- 4t l  "' ' tiP A, 

so any y, y' as in (5) obey 

I1r ytl _> 112p§ G+II]- fly- G+xll- I1r X~p+lll -> t l  "" .flp(4A-- A -  A). 

This proves (5). In conjunction with (4), it implies that  whenever i,j > p + 1, 

y �9 ~(2i, fll-" "fli--1 A) 
(6) Y'�9 "- lA)]  ~ Hy-y'[]>fll '"f lpA~_fll '"f l i-1A. 
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Now for each n E N we define a bump bn: X -+ R by nesting n sums: 

r 

+ ~ (T[/31]~r ( x - 2 2 )  
r162 

(7) "'. 

-]- Z T[~l/32 " " /3n-1]~r (x - ":~n) ) " " ) " 
r eS(r162 ..... r 

To clarify the support of b.,  recall that for every ~ E X* and 7 E (0, II~lI), we 

have ~r = 0 whenever [Izll >_ A. Hence for each i _< n, 

(s) T[Z,Z~...Z~_I]~r ( ~ -  ~ )  r 0 ~ IIx- ~ll < Z~'"Z~-IZ~ < Z~ '. 

Every x E X with IIxtl _> 1 satisfies Iix - xill > Ai by (3), and hence produces a 

zero value in every term on the right side of (7). Thus supp b. C_ Bx.  Also, in 

view of (1), we have 

(9) v (T[Z~/3~--- /3~_~]~r (x  - ~ )  = r 

w h e n e v e r  II x - x~lI < / 3 1 . . .  ~i-1/3i. 

We have taken care to arrange the following situation: 

CLAIM: For every x E X and every n E N there are an admissible n- tuple  

(~1,.- . ,  ~ )  and a neighbourhood U of x such that  all y E U satisfy 

(10) 

bn(y) =~r (Y - Xl) 

+ T[Zl]Vr (u - ~ )  

+ T[Z1/3~]~r (y - ~ )  

-[- " " " "~- T [ / 3 1 f 1 2 " " "  ~ n - - 1 ] ~ r  (Y - X n ) ,  

and, in particular, 

(11) Vbn(x)  E f~. 

To prove this claim, fix x E X and n E N. Suppose first that x lies outside the 

ball B(x~(1), A) for every 7/E Ft. Since Iix~ - x~, II -> 4A whenever ~ r ~' in D, 

the triangle inequality implies that  Uo = {y: IIY - xlt < A} meets at most one 
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ball of the form B(x~, A), ~ E D. Hence there exists (f > 0 for which U = B(x, 5) 

meets no such bali. Combining (8) and (4) establishes that bn(y) = 0 for every 

y E U, and moreover, that in this degenerate case, (10) holds for e v e r y  admissible 

n-tuple. Of course, Vbn(x) --- 0 obeys (11). 

Alternatively, suppose x E ~(x~(1), A) for some ~ E ft. This establishes case 

p -- 1 of the following condition: 

x E B(~p,/~l . . . f lp_lA) for some (~1,. . . , r  E A, 1 _< p <_ n. 

Choose the largest such p. Condition (6) implies that the associated p-tuple 

(~1,-.-,  ~p) is unique. Moreover, using this p-tuple to specify 

u0 = {y:  Ily - xil < 

produces an open set in which the only nonzero summands in lines 1 through 

p of (7) are associated with this same p-tuple. If p = n, this establishes (10). 

If p < n, the maximality of p implies that for every ~' E S ( ~ b . . . ,  (p), we have 

x • B(~p+l,/~1"'" flpA). Recall that,  by (2), X~p+l = Xp -{- i l l ' ' "  ]~pXrl'(p+l )" The 

4A-separation of distinct vectors of form x~, ~ E D, guarantees that among all 

the balls ]~(~p+l,/~1 �9 �9 �9 ~pA) arising this way, there can be at most one that meets 

U0. And since the centre of U0 lies outside that one, we can choose 5 > 0 so small 

that U -- {y: IIY - x[I < ~} obeys 

U M B(~p+ 1,/~1"'" ~pA) = O whenever ~' �9 S(~I , . . . ,  ~p). 

Together with (6) and (8), this shows that all summands in lines p + 1 , . . . , n  

of (7) contribute 0 to the definition of bn (y), for every y in U. Indeed, much as in 

the previous paragraph, conclusion (10) holds for U along any admissible n-tuple 

whose first p entries agree with the given ones. To prove (11), recall (4): for each 

j <: p we have II x - x j [ I  </~1"" "/~j, so by (9), 

(12) Vbn(x) E ~ l + ~ 2 + ' " + ~ p - l + D . ~ p ( O , ~ p ) = D . ~ p ( ~ l ( p - 1 ) , ~ ( p ) ) C ~ .  

Thus the stated claim holds in all cases. 

The claim above implies that each bn is Cl-smooth on X; also, for all x �9 X,  

[bn+l(x) - b,~(x)I < A n and IIVbn+l - Vbn(x)I t < 2 -n + an. 

Thus the bumps bn, n �9 N, converge uniformly to a bump, say b, and their 

gradients Vbn, n �9 N, also converge uniformly on X. Therefore b is a Cl-smooth 

function with Vb(x) = l i m n - ~  Vbn(x) uniformly for x �9 X. We note that 

s u p p b C B x  and t h a t 0 < b ( x ) < A + A  s + . . . < l a s A = ~ .  
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Since ~(Vbn) C_ ~ for every n by (11), it follows that 7~(Vb) C_ ~t. 

To show that 7~(Vb) _D ~, fix any r/E ~. Let (~1, ~2,.-.) be the corresponding 

admissible sequence, with 7i, scale factors 9i and centres xi given by (2). Note 

that  since each 9i < A = ~ and Iix{]l < 1 - A, the centres xi are partial sums 

of the convergent series 

Moreover, 

:---- xv(1) + 91x~(2) + 9192x~(3) + " " -  

117 - _<(9, + 9 ,92 + . . . ) ( 1  - 2,) 

< 9 , ( 1 +  A + A 2 + . - . ) ( 1 -  A) = 91, 

- <_(919  + 919 93 + - . . ) ( 1  - 

< 9192(1 + A -Jr- A2 -'l-"" .)(1 - A) = 9192, 

SO X C B(Xi ,91  "" "9i)  for every i C N. This implies that  Vbn(Z) = ~1 + " "  + ~n 

for every n E N, and 

VD(x) : n--+oolim Vbn('X ) = l i lY l  (~1 q - ' "  7'- ~n) = n--+oolim r/(n) = r/. 

Since r 1 C ~ was arbitrary, we have ~ c_/~(Vb). I 

Remarks: Our Theorem evidently applies whenever fl C X* is an open bounded 

convex set containing the origin. 

Consider any set U C X* that can be expressed as UaEA ~a where each fl~ 

satisfies the assumptions of the Theorem above, and where A is a set whose 

cardinality does not exceed the density character of X. For every a E A let b~ 

be a CLsmooth  bump on X such that  T~(Vba) = ~-~. By scaling and shifting 

domains, we may arrange for all b~'s to have mutually disjoint supports lying 

in Bx. Then b = )--~,~eA b~ is a CLsmooth  (but perhaps not Lipschitz) bump 

satisfying 7~(Vb) = U. This construction covers many unbounded sets, even in 

the case where the index set A is countable. In particular, we can express any 

open connected set U containing the origin as T~(Vb), as Azagra and Jimenez 

have shown that all such sets have the above form. Taking U = X* reproduces 

the result of Azagra and Deville [1]. 

Our theorem allows for sets fl that  are far from being starshaped, like the 

interior of •x (x0, 2) \ Bx (Xo, 1) whenever 1 < IixoII < 2. Indeed, gradient-range 
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chaining (tool E above) allows us to produce figures which are not even s imply  

connected.  A finite-dimensional version of this observation,  with il lustrations, 

appears  in [5]. 

The  conclusions of our Theorem cover those of [5, Theorem 12], one of t ha t  

pape r ' s  main  results. However, the proof  in [5] (where X -- R n) needs a ra ther  

different a rgument  because no bounded  subset  of R n can suppor t  infinitely m a n y  

b u m p s  having disjoint suppor ts  of comparab le  diameters .  

4. A p p e n d i x  

Here we construct  Coo-smooth  functions p and m tha t  imi ta te  the functions 

t ~-~ t + and (s , t )  ~-+ s A t .  

LEMMA A: Let r > O, and let p : R --+ [0, +c~) be an even C~176 function, 
with supp p C [ - r ,  r] and f• p(u)du = 1. Define p: R --+ [0, +c~)  and m: R 2 --+ R 
by 

p(t) = . /~  [t - r - u] + p(u)du, t e R, 

re(s, t) -= S/R2 [(s - u) A (t - v)l p(u)p(v)dudv, (s, t) �9 R 2. 

Then p is nondecreasing and convex, both p and m are Coo-smooth, and 

P ( t ) = {  O't-r, iftift<O'>_2r, 0_<p( t )<_ ltifO<t<2r,_ 

s, i f s < _ t - 2 r ,  m ( s , t ) < s A t a l w a y s ,  
m ( s , t ) = m ( t , s ) =  t, i f t < _ s - 2 r ,  - 

a n d  r~(p')  = [0, 1] a n d  r~(m') = { ( a ,  1 - c~): a �9 [0, 1]} .  

Proof'. The  smoothness  of p and m is well-known and easy to prove. If  t >_ 2r, 

we have t - r - u > 0 for every u E supp p and hence 

p ( t ) =  f ( t - r - u ) p ( u ) d u = t - r -  f u p ( u ) d u = t - r ,  

because u ~ up(u) is an odd function. Similarly, p(t) = 0 for t _< 0. Since 

t ~-~ (t - r)  + is convex, p is convex too: we have p(0) = 0 and p(2r)  = r,  so this 

forces p(t) <_ �89 for 0 < t < 2r. 

For any t E [0, 2r], the following calculat ion shows tha t  p'(t) E [0, 1]: 

f S;-" i;-" p'(t) = ,  [t - r - u] + p'(u)du = (t - r - u)p'(u)du = p(u)du. 
JR 
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Since p �9 C ~ , with p'( t )  = 0 for t < 0 and i f ( t )  = 1 for t > r,  we have 

R ( p ' )  = [0, 1]. 

Similar a rguments  establish the s ta ted  proper t ies  of m. Indeed, the gradient  

of (s, t) ~+ s A t lies in {(0, 1), (1, 0)} whenever it exists, so the averaging implicit  

in mollification gives V m ( s , t )  �9 eo{(O, 1), (1,0)} = {(a,  1 - a) :  a �9 [0, 1]} for 

every (s, t). But  V m  is continuous and takes on the values (1, O) and (0, 1), so 

n ( v m )  = co {(0,1), (1,0)}. m 
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